本文来源 | Deloitte、赛博研究院
12月13日,德勤发布《2025年技术趋势》(Tech Trends 2025)报告,深入探讨了人工智能在日常生活中逐步应用的广度与深度。
空间计算作为一种前沿的计算范式,旨在利用空间数据的内在特性(如地理位置、空间关系、邻域结构等)来驱动计算过程,从而实现更加高效、精确的数据处理、检索和挖掘。与传统的数据处理方法相比,空间计算能够有效突破信息孤岛,为员工和客户创造更自然的信息交互方式。通过结合先进的模拟技术与大规模空间数据分析,企业已能够在多种场景下进行精确建模,评估不同条件对运营绩效的影响。
随着空间数据管理的不断深化和技术的持续发展,组织将推动更多创新应用落地,以充分挖掘空间信息的价值。同时,随着人工智能技术的进步,未来几年的空间计算将呈现更高的流畅性和互操作性,使得AI能够更精准地预测用户需求,并主动提供个性化的解决方案,从而进一步推动企业的智能化转型和自动化进程。
随着AI在执行层面的应用不断深入,可能即将迎来代理AI(Agent-based AI)的新时代。在这一新时代,AI将不仅仅是一个辅助工具,而是充当“副驾驶”角色,深度融入消费者和企业的日常运营中,帮助他们更高效地决策、工作和生活。通过这种智能化的协同合作,AI有望彻底改变人类的工作方式和生活体验。
尽管AI的计算需求带来了可持续性方面的挑战,尤其是在能源消耗方面,但随着硬件能效的不断提升,AI硬件正变得越来越普及和高效。未来,AI将深度集成到各类智能设备中,推动物联网和机器人技术的革新,尤其是在医疗、制造和服务等行业,通过更加智能和自主的设备,推动数字化转型和效率提升。
随着传统AI与生成式AI能力的持续提升,技术交付的各个阶段正逐步从“人类主导”向“人类参与”转型。这一变化预示着IT职能将更加精简、高效,进一步提升工作效率,助力企业在激烈的市场竞争中实现更快的创新与增长。
为了应对这一威胁,新的加密标准正在逐步出现,为未来的安全需求提供了有效的缓解方案。尽管更新现有加密实践技术相对可行,但这一过程需要较长时间的实施和过渡。因此,企业应尽早采取行动,着手规划和部署适应量子计算时代的安全措施,以防范潜在的风险。同时,企业还应重视网络安全的基本防护和加密技术的灵活性,以确保能够应对更广泛的安全挑战。
需要特别注意的是“自动化悖论”:随着系统复杂性的增加,人类员工的角色可能变得更加重要。将人工智能添加到核心系统可能会简化用户体验,但也可能使它们在架构层面变得更加复杂。因此,管理AI驱动的核心系统依然需要具备深厚的技术能力,以确保其稳定性、可扩展性和长期的有效性。
报告全文请点击【阅读原文】
END
(添加请备注公司名和职称)
本文来源 | Deloitte、赛博研究院
12月13日,德勤发布《2025年技术趋势》(Tech Trends 2025)报告,深入探讨了人工智能在日常生活中逐步应用的广度与深度。
空间计算作为一种前沿的计算范式,旨在利用空间数据的内在特性(如地理位置、空间关系、邻域结构等)来驱动计算过程,从而实现更加高效、精确的数据处理、检索和挖掘。与传统的数据处理方法相比,空间计算能够有效突破信息孤岛,为员工和客户创造更自然的信息交互方式。通过结合先进的模拟技术与大规模空间数据分析,企业已能够在多种场景下进行精确建模,评估不同条件对运营绩效的影响。
随着空间数据管理的不断深化和技术的持续发展,组织将推动更多创新应用落地,以充分挖掘空间信息的价值。同时,随着人工智能技术的进步,未来几年的空间计算将呈现更高的流畅性和互操作性,使得AI能够更精准地预测用户需求,并主动提供个性化的解决方案,从而进一步推动企业的智能化转型和自动化进程。
随着AI在执行层面的应用不断深入,可能即将迎来代理AI(Agent-based AI)的新时代。在这一新时代,AI将不仅仅是一个辅助工具,而是充当“副驾驶”角色,深度融入消费者和企业的日常运营中,帮助他们更高效地决策、工作和生活。通过这种智能化的协同合作,AI有望彻底改变人类的工作方式和生活体验。
尽管AI的计算需求带来了可持续性方面的挑战,尤其是在能源消耗方面,但随着硬件能效的不断提升,AI硬件正变得越来越普及和高效。未来,AI将深度集成到各类智能设备中,推动物联网和机器人技术的革新,尤其是在医疗、制造和服务等行业,通过更加智能和自主的设备,推动数字化转型和效率提升。
随着传统AI与生成式AI能力的持续提升,技术交付的各个阶段正逐步从“人类主导”向“人类参与”转型。这一变化预示着IT职能将更加精简、高效,进一步提升工作效率,助力企业在激烈的市场竞争中实现更快的创新与增长。
为了应对这一威胁,新的加密标准正在逐步出现,为未来的安全需求提供了有效的缓解方案。尽管更新现有加密实践技术相对可行,但这一过程需要较长时间的实施和过渡。因此,企业应尽早采取行动,着手规划和部署适应量子计算时代的安全措施,以防范潜在的风险。同时,企业还应重视网络安全的基本防护和加密技术的灵活性,以确保能够应对更广泛的安全挑战。
需要特别注意的是“自动化悖论”:随着系统复杂性的增加,人类员工的角色可能变得更加重要。将人工智能添加到核心系统可能会简化用户体验,但也可能使它们在架构层面变得更加复杂。因此,管理AI驱动的核心系统依然需要具备深厚的技术能力,以确保其稳定性、可扩展性和长期的有效性。
报告全文请点击【阅读原文】
END
(添加请备注公司名和职称)