第一作者:Sancan Han
通讯作者:Dawei Zhang,Xiaosheng Fang,Ding Wang
通讯单位:上海理工大学,复旦大学
DOI: 10.1021/acs.nanolett.4c01555
近日,上海理工大学材料与化学学院王丁团队在MEMS气体传感领域取得重要进展,相关研究成果以“Ultrafast and Parts-per-Billion-Level MEMS Gas Sensors by Hetero Interface Engineering of 2D/2D Cu-TCPP@ZnIn2S4with Enriched Surface Sulfur Vacancies”为题在国际著名期刊Nano Letters上发表。
背景介绍
三乙胺(TEA)是一种的挥发性有机化合物(VOC),在工业生产中常作为极性溶剂、聚合物抑制剂、防腐剂和染料合成剂等被广泛应用。但是,TEA具有强烈的氨气味和潜在毒性,当TEA的浓度超过10 ppm时会对人体健康产生严重影响,长期暴露于TEA环境中时将对呼吸系统、中枢神经系统、循环系统和肝脏等造成严重损伤,甚至危及生命。因此,精确监测日常环境中的TEA浓度,评估室内空气质量,对于保护人体健康至关重要。
目前,TEA传感器主要采用色谱法、电化学法和光谱法等,但这些方法存在所需设备昂贵、或实验程序复杂等不足;半导体型气体传感器则工作温度高、功耗较大、稳定性和寿命较差,检测范围局限于ppm量级。相比之下,谐振式微悬臂梁微机电系统(MEMS)气体传感器因其工作原理简单、灵敏度高等优点,能够在室温下将物理量转换为频率信号实现对目标气体的监测,在气体吸附、传感以及材料热力学和动力学参数分析等领域被广泛应用。
在以往的研究中,石墨烯、金属有机框架(MOF)、金属氧化物和金属硫化物等气敏材料用于谐振式微悬臂梁MEMS气体传感器检测NH3、甲苯、NO和甲醛等气体已取得一些进展,但关于TEA传感的研究鲜有报道。因此,本项研究合理设计一种新型复合敏感材料,用于构建高性能的TEA气体传感器,实现日常环境中TEA的快速高效识别、维护公众安全具有重要意义。
本文亮点
图文解析
第一作者:Sancan Han
通讯作者:Dawei Zhang,Xiaosheng Fang,Ding Wang
通讯单位:上海理工大学,复旦大学
DOI: 10.1021/acs.nanolett.4c01555
近日,上海理工大学材料与化学学院王丁团队在MEMS气体传感领域取得重要进展,相关研究成果以“Ultrafast and Parts-per-Billion-Level MEMS Gas Sensors by Hetero Interface Engineering of 2D/2D Cu-TCPP@ZnIn2S4with Enriched Surface Sulfur Vacancies”为题在国际著名期刊Nano Letters上发表。
背景介绍
三乙胺(TEA)是一种的挥发性有机化合物(VOC),在工业生产中常作为极性溶剂、聚合物抑制剂、防腐剂和染料合成剂等被广泛应用。但是,TEA具有强烈的氨气味和潜在毒性,当TEA的浓度超过10 ppm时会对人体健康产生严重影响,长期暴露于TEA环境中时将对呼吸系统、中枢神经系统、循环系统和肝脏等造成严重损伤,甚至危及生命。因此,精确监测日常环境中的TEA浓度,评估室内空气质量,对于保护人体健康至关重要。
目前,TEA传感器主要采用色谱法、电化学法和光谱法等,但这些方法存在所需设备昂贵、或实验程序复杂等不足;半导体型气体传感器则工作温度高、功耗较大、稳定性和寿命较差,检测范围局限于ppm量级。相比之下,谐振式微悬臂梁微机电系统(MEMS)气体传感器因其工作原理简单、灵敏度高等优点,能够在室温下将物理量转换为频率信号实现对目标气体的监测,在气体吸附、传感以及材料热力学和动力学参数分析等领域被广泛应用。
在以往的研究中,石墨烯、金属有机框架(MOF)、金属氧化物和金属硫化物等气敏材料用于谐振式微悬臂梁MEMS气体传感器检测NH3、甲苯、NO和甲醛等气体已取得一些进展,但关于TEA传感的研究鲜有报道。因此,本项研究合理设计一种新型复合敏感材料,用于构建高性能的TEA气体传感器,实现日常环境中TEA的快速高效识别、维护公众安全具有重要意义。
本文亮点
图文解析